Skip to main content

Core Contents

@jonathan_steed

Jonathan W. Steed, David R. Turner and Karl J. Wallace

Department of Chemistry, Durham University, UK.
School of Chemistry, Monash University, Australia
Department of Chemistry and Biochemistry, University of Southern Mississippi, USA

Contents

Chapter 1: Introduction

1.1 What is Supramolecular Chemistry?

1.2 Selectivity

  • 1.2.1 The ‘Lock and Key’ Principle and Induced Fit Model
  • 1.2.2 Complementarity
  • 1.2.3 Cooperativity and the Chelate Effect
  • 1.2.4 Preorganisation
  • 1.2.5 Binding Constants
  • 1.2.6 Kinetic and Thermodynamic Selectivity
  • 1.2.7 Solvation Effects

1.3 Supramolecular interactions

  • 1.3.1 Ionic and dipolar interactions
  • 1.3.2 Hydrogen bonding
  • 1.3.3 p interactions
  • 1.3.4 Van der Waal’s interactions
  • 1.3.5 Close packing in the solid state
  • 1.3.6 Hydrophobic effects

1.4 Supramolecular Design

1.5 Suggested Further Reading

Chapter 2: Solution Host-Guest Chemistry

2.1 Introduction: Guests in Solution

2.2 Macrocyclic vs Acyclic Hosts

  • 2.2.1 High Dilution Synthesis
  • 2.2.2 Template synthesis

2.3 Cation Binding

  • 2.3.1 Introduction
  • 2.3.2 The early years
  • 2.3.3 Crown Ethers, Lariat Ethers, Cryptands
  • 2.3.4 Spherands, Hemispherands, Cryptaspherands, Heterocrowns and Heterocryptands
  • 2.3.5 Schiff’s Bases
  • 2.3.6 Calixarenes
  • 2.3.7 Biological ligands: Ion channels and Siderphores

2.4 Anion Binding

  • 2.4.1 Introduction
  • 2.4.2 Charged Receptors
    • 2.4.2.1 Electrostatic Interactions
    • 2.4.2.2 Electrostatic and Hydrogen Bonding Interactions
  • 2.4.3 Neutral Receptors
    • 2.4.3.1 Hydrogen-Bonding Interactions
  • 2.4.4 Lewis Acid Receptors and Anticrowns

2.5 Metal Containing Receptors

  • 2.5.1 Metals as structural elements
  • 2.5.2 Metals as electrochemical sensing elements

2.6 Simultaneous Cation and Anion Receptors

  • 2.6.1 Cascade Receptors
  • 2.6.2 Ditopic Receptors
  • 2.6.3 Zwitterion Receptors
  • 2.6.4 Cation and Neutral Simultaneous Receptors

2.7 Neutral Molecule Binding

  • 2.7.1 Cyclophane Hosts
  • 2.7.2 Carcerands and Hemicarands
  • 2.7.3 Cryptophanes and Hemicryptophanes
  • 2.7.4 Calixarenes and Resorcarenes
  • 2.7.5 Cyclodextrins
    • 2.7.5.1 Cyclodextrins: Industrial applications
  • 2.7.6 Clefts and Tweezers

2.8 Supramolecular Catalysis and Enzyme Mimics

  • 2.8.1 Zinc complexes as Catalysts
  • 2.8.2 Calix[4]arenes and Cyclodextrins as catalysts
  • 2.8.3 Dendimers as nano-reactors for catalysis
  • 2.8.4 Enzyme mimics
  • 2.8.5 Corands as ATP mimics

2.9 References

Chapter 3: Self-Assembly

3.1 Introduction

  • 3.1.1 Self-Assembly
  • 3.1.2 Definitions and Basic Concepts of Self-Assembly
  • 3.1.3 Enthalpic and Entropic Considerations
  • 3.1.4 Self-Assembly with Modification
  • 3.1.5 Occurrences and Uses

3.2 Biological Self-Assembly

  • 3.2.1 Biological Self-Assembly
  • 3.2.2 Proteins
  • 3.2.3 Viruses
  • 3.2.4 DNA

3.3 Ladders, Polygons and Helices

  • 3.3.1 Self-Assembly using Metal-Templates
  • 3.3.2 Racks, Ladders and Grids
  • 3.3.3 Helicates
  • 3.3.4 Molecular Polygons

3.4 Rotaxanes, Catenanes and Knots

  • 3.4.1 Topological Connectivity
  • 3.4.2 Rotaxanes
  • 3.4.3 Catenanes
  • 3.4.4 Rotaxanes and Catenanes as Molecular Machines
  • 3.4.5 Borromeates
  • 3.4.6 Knots

3.5 Self-Assembling Capsules

  • 3.5.1 Molecular Containers
  • 3.5.2 Metal-directed Capsules
  • 3.5.3 Hydrogen-bonded Capsules

3.6 References

Chapter 4: Solid-State Supramolecular Chemistry

4.1 Introduction

4.2 Zeolites

  • 4.2.1 Zeolite Structure
  • 4.2.2 Zeolite Synthesis
  • 4.2.4 Zeolites and Catalysis

4.3 Clathrates

  • 4.3.1 Urea / Thiourea Clathrates
  • 4.3.2 Trimesic Acid Clathrates
  • 4.3.3 Hydroquinone & Dianin’s Compound

4.4 Clathrate Hydrates

  • 4.4.1 Clathrate Hydrate Structure
  • 4.4.2 Guest Properties
  • 4.4.3 Clathrate Hydrates in the Petroleum Industry
  • 4.4.4 Other Uses and Occurrences of Clathrate Hydrates

4.5 Crystal Engineering

  • 4.5.1 Concepts in Crystal Engineering
  • 4.5.2 The Cambridge Structural Database
  • 4.5.3 Crystal Engineering with Hydrogen Bonds
  • 4.5.4 π-interactions
  • 4.5.5 Other Common Synthons
  • 4.5.6 Solid-State Reactivity
  • 4.5.7 Engineering Crystals

4.6 Coordination Polymers

  • 4.6.1 Coordination Polymers
  • 4.6.2 Metal-Organic Frameworks
  • 4.6.3 Guest Properties of MOFs
  • 4.6.4 Interpenetrating Networks

Chapter 5: Nanochemistry

5.1 Introduction

  • 5.1.1 What is Nanotechnology?
  • 5.1.2 Nanotechnology: the ‘top down’ approach
  • 5.1.2 Nanochemistry: the ‘bottom up’ approach

5.2 Nanomanipulation

5.3 Molecular Devices

  • 5.3.1 Photochemical devices
  • 5.3.2 Molecular Wires and Rectifiers
  • 5.3.3 Molecular Switches
  • 5.3.4 Molecular Muscle
  • 5.3.5 Towards Addressable Nanodevices
  • 5.3.6 Addressable Arrays

5.4 Self-Assembled Monolayers (SAMs)

  • 5.4.1 Surfactants, Micelles and Vesicles
  • 5.4.2 Langmuir-Blodgett Films
  • 5.4.3 Thiol SAMs
  • 5.4.4 Liquid Crystals

5.5 Soft Lithography

5.6 Nanoparticles

  • 5.6.1 Synthesis and Derivatisation of Nanoparticles
  • 5.6.2 Quantum Size Effects
  • 5.6.3 Nanoparticles as Sensors

5.7 Fullerenes and Nanotubes

  • 5.7.1 Synthesis and Structure of Fullerenes and Carbon Nanotubes
  • 5.7.2 Fullerenes as Guests
  • 5.7.3 Fullerenes as Hosts
  • 5.7.4 Carbon Nanotubes

5.8 Dendrimers

5.9 Fibres and Gels

  • 5.9.1 Supramolecular Gels
  • 5.9.2 Molecular Imprinted Polymers
  • 5.9.3 Templated Monodisperse Latex

5.10 Nanobiology and Biomimetic Chemistry

  • 5.10.1 Biological Components in Nanotechnology
  • 5.10.2 Nanoparticles in Medicine
  • 5.10.3 Bio-Inspired Materials
  • 5.10.4 An ‘Inorganic Cell’
  • 5.10.5 Templated Biomimetic Materials

5.11 References